
Journal of Sound and <ibration (2001) 247(4), 633}653
doi:10.1006/jsvi.2001.3769, available online at http://www.idealibrary.com on
ANALYTICAL STUDY OF A SYSTEM WITH A
MECHANICAL FILTER

Y.-Y. LI AND B. BALACHANDRAN

Department of Mechanical Engineering, ;niversity of Maryland, College Park, MD 20742-3035, ;.S.A.

(Received 26 June 2000, and in ,nal form 6 April 2001)

In the authors' earlier work, a concept called a mechanical ,lter was introduced and
investigated for suppressing non-linear, planar crane}load oscillations on #oating platforms.
To implement this concept, the pivot point about which the load oscillations occur was
constrained to follow a circular track. In the current e!ort, the geometry of the planar
mechanical "lter is generalized, and the corresponding non-linear dynamical system is
derived and presented. On the basis of a Lyapunov function, analytical results are obtained
to aid the choice of the "lter geometry and the control law. For weak harmonic disturbances,
the method of multiple scales is used to study non-linear oscillations of the system with
a circular "lter. The results of the perturbation analysis demonstrate the occurrence of
cyclic-fold bifurcations in the system with the passive "lter and suppression of crane}load
oscillations in the system with the active "lter. The analytical results are found to be in
agreement with the associated numerical results. For large magnitude harmonic and
aperiodic disturbances, numerical results demonstrate the e!ectiveness of the active "lter in
suppressing &&large'' crane}load oscillations. Tailoring of the response suppression
bandwidth by using the active "lter is also discussed.

( 2001 Academic Press
1. INTRODUCTION

Cranes play an important role in production processes and serve to transfer loads from one
place to another. Over the past several decades, the topic of safe and e!ective control of
cranes on "xed and #oating platforms has been addressed by numerous researchers. For
a crane, which is mounted on a #oating platform such as a shipboard crane, the
disturbances produced by the platform motions also need to be taken into account.

The disturbances experienced by a ship vessel are usually aperiodic in nature, and in
response, this vessel can undergo roll, surge, heave, yaw, sway, and pitch motions. For
a shipboard crane, these vessel motions in turn excite the crane}load motions. In general,
the dynamics of the three-dimensional load motions is complex (e.g., see references [1}3]).
However, the dominant contribution in the disturbance provided to a crane load is known
to be due to ship}roll motions. Although many studies on control of crane}load oscillations
have been conducted previously, the focus of these studies has been on cranes on "xed
platforms (e.g., references [4}10]). Furthermore, as discussed in the previous work of the
authors [11}14], the above-mentioned e!orts are primarily suited for control of &&small''
crane}load oscillations. Chin and Nayfeh [15] used perturbation analysis and numerical
simulations to investigate a weakly non-linear model of a spherical pendulum
representative of a ship}crane load. Yuan et al. [16] proposed a modi"ed cable rigging
called &&Maryland Rigging'' for controlling planar-load oscillations. Iwasaki et al. [17] used
an active mass}damper system to attenuate oscillations of a sling frame, which is mounted
on a #oating crane.
0022-460X/01/440633#21 $35.00/0 ( 2001 Academic Press



Figure 1. Planar system with generalized "lter.

634 Y.-Y. LI AND B. BALACHANDRAN
Recently, the notion of a mechanical "lter was introduced for controlling non-linear,
planar-load oscillations on #oating platforms. As stated in the earlier e!orts of the authors
[11, 13], the words mechanical ,lter are used to mean a device that is introduced to suppress
and/or eliminate undesired system dynamics. Here, the "lter geometry is generalized and
analytical results obtained by using a Lyapunov function and perturbation analysis are
discussed. The numerical results are also presented to complement the analytical results and
illustrate the e!ectiveness of the "lter in the presence of &&large'' magnitude harmonic and
aperiodic ship}roll-induced disturbances.

The rest of this paper is organized as follows. The governing equations for a system with
the generalized "lter are derived and presented in section 2 along with analytical results
based on Lyapunov stability. For &&weak'' harmonic forcing, the method of multiple scales is
used to analyze the non-linear oscillations of the system with the circular "lter in section 3.
In this section, numerical results obtained for &&large'' magnitude harmonic and aperiodic
disturbances are also presented, and the in#uence of each of the di!erent feedback terms on
the load response is also explored. Inferences drawn from the work are presented to close
the article.

2. MECHANICAL FILTER WITH GENERALIZED GEOMETRY

In this section, a planar mechanical "lter with generalized geometry is considered as
shown in Figure 1. The function x"f (y), which describes the geometry of the track, is
assumed to be a continuously di!erentiable function with respect to y upto the second
order. The mass of the pivot is represented by m

2
, the spring constant associated with each

restraining spring is represented by k, and the dimensions of the pivot mass are assumed to
be &&small''with respect to characteristic dimensions of the track. The excitation components
along the x- and y-axis are represented by x

e
and y

e
respectively.
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For this system, after inclusion of damping and the control input u shown in Figure 1, the
governing equations for the planar system are determined by using Lagrange's equations to
have the following form:
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Once the geometry of the track is chosen as in the study of Balachandran et al. [13], the
governing equations of the system can be obtained by substituting the geometry function
f (y) into equations (1) and (2). This function can be chosen to introduce &&appropriate''
coupling non-linearities between the pivot state y and the load state h. In these equations,
the quantities ch and c

y
represent damping associated with the angular motions of the load

and the horizontal translational motions of the pivot point respectively. Next, to aid the
choice of the track geometry and the form of the active control law, analytical results
obtained on the basis of a Lyapunov function are presented.

Theorem 1. Suppose that x
e
"y

e
"0 and ch"c

y
"0 in dynamical system (1) and (2) and let

the ,lter geometry be such that x"f (y))0, and the control input u"!ByR , B'0. Also, let
the origin (h, hQ , y, yR )"(0, 0, 0, 0) be the considered equilibrium point and DLS]R3 be a
domain containing the equilibrium point. ¹hen, the equilibrium position (h, hQ , y, yR )"(0, 0, 0, 0)
is stable.

Proof. Let the energy function of the system be chosen as the Lyapunov function; that is,
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From equation (3), it is clear that

<(0)"0 and <'0 in D!M0N. (4)

The time derivative <Q along a solution of equations (1) and (2) is given by
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After making use of equation (1), the expression for <0 can be simpli"ed to

<Q "uyR "!ByR 2)0 in D!M0N . (6)

Therefore, according to Lyapunov, the equilibrium point is stable [18, 19]. K

Theorem 2. Suppose that x
e
"y

e
"0 and ch"c

y
"0 in the dynamical system (1) and (2) and

let the ,lter geometry be such that x"f (y))0 and the control input u"!ByR , B'0. If
there is no other solution (h*, hQ *, y*, yR * ) of system (1) and (2) under the above conditions
other than the solution (h, hQ , y, yR )"(0, 0, 0, 0) within D

l
LDLS]R3, then the origin

(h, hQ , y, yR )"(0, 0, 0, 0) is asymptotically stable in D
l
.

Proof. From Lyapunov function (3), one has <(0)"0, and a domain can be found so that

D
l
"M(h, hQ , y, yR ) D<)l N, (7)

where l is a "nite positive quantity. In addition,

<'0 for (h, hQ , y, yR )3D
l

and (h, hQ , y, yR )O(0, 0, 0, 0), (8)

<Q "uyR "!ByR 2)0 for (h, hQ , y, yR )3D
l
. (9)

On the basis of Krasovskii's theorem [18], the origin (h, hQ , y, yR )"(0, 0, 0, 0) is
asymptotically stable in D

l
. K

It is easy to verify that the above two theorems hold when ch'0 and c
y
'0. From the

above global analytical results, as expected, it is found that the derivative feedback term ByR
plays an important role in determining the system stability. Regarding the geometry of the
"lter, the results indicate that as long as x"f (y))0, it is possible to have a stable
non-linear system. Shapes other than a circular track that satisfy this condition can be used.
However, the analytical results presented thus far are valid only for free oscillations. In the
case of harmonically forced oscillations, the Lyapunov function can still be used to illustrate
response stabilization.

3. MECHANICAL FILTER WITH CIRCULAR GEOMETRY

In this section, a mechanical "lter with a circular track is presented along with results of
non-linear analysis carried out for a system subjected to a &&weak'' harmonic forcing.
A linear analysis is also presented to illustrate how the system resonances can be tailored by
using active feedback. In addition, the system responses are numerically explored for &&large''
magnitude excitations and the in#uences of the di!erent feedback terms on the load
response are also explored.

In Figure 2, side views of a crane con"guration and a modi"ed crane con"guration are
shown along with an enlarged inset of the "lter introduced in the earlier work of the authors



Figure 2. Crane con"guration without rider block tagging system: "lter at boom tip. (a) Sideview of crane
con"guration; (b) modi"ed crane con"guration, (c) mechanical "lter.

Figure 3. Crane con"guration with rider block tagging system: "lter in-between boom tip and load. (a) Sideview
of crane con"guration; (b) modi"ed crane con"guration; (c) mechanical "lter.
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[13, 14]. In Figure 3, side views of a di!erent crane con"guration and a modi"ed version of
this crane con"guration are shown along with an enlarged inset of the circular "lter. In the
crane systems shown in Figures 2 and 3, the mechanical "lters are installed at two di!erent
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positions. In each case, the boom orientation in the plane is speci"ed by the angle / and the
longitudinal axis of the vessel about which the roll oscillations occur is normal to the
considered side view. Here, only planar-load oscillations that may arise as a result of
ship}roll motions are addressed. Although the physical con"gurations shown in Figures 2
and 3 are di!erent, the same mathematical model can be used to describe the systems with
and without the "lter to understand the qualitative aspects of the dynamics.

Assuming that the boom con"guration is rigid, the roll motion of the ship will translate
into an excitation with horizontal and vertical components at the crane pivot. As in the
earlier work [13], the circular track is assumed to be of radius R

2
. After inclusion of

damping, the planar pendulum in the system without the "lter is governed by
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where R
1

is the length of the inextensional cable shown in Figure 1.
In the system with the "lter, the motion of mass m

2
is constrained to follow a circular

track that is described by
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After substituting equation (11) into equations (1) and (2), the resulting equations are
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When the excitation due to the roll motion of the vessel is harmonic, the excitation
components x

e
(t) and y

e
(t) can be idealized to be

x
e
(t)"(F sinXt) cos/, y

e
(t)"(F sinXt ) sin/, (14)

where F is the excitation amplitude and X is the excitation frequency. To simulate
excitations produced by aperiodic roll motions, the RoK ssler system (e.g., reference [16])

xR "!0)5(y#z)

yR "0)5(x#ay)

zR"0)5[b#z(x!c)]H x
e
"0)2x cos/; y

e
"0)2x sin/ (15)

with the parameter values a"0)398, b"2, and c"4 is used.



SYSTEM WITH MECHANICAL FILTER 639
In the system with the "lter, when the control input u"0 in equations (12) and (13), the
corresponding case is referred to as a &&passive control'' or &&passive "lter'' case. Otherwise,
the corresponding case is referred to as an &&active control'' or &&active "lter'' case. As in the
study of Balachandran et al. [13], a feedback control law of the following form is
considered.

u"u
feedback

"m
1
(A sin h#ByR #Cy). (16)

3.1. LINEAR SYSTEM

Here, a linearized version of equations (12) and (13) is used to point out how the
proportional feedback terms in the active control law (16) can be used to tailor the system
resonances. For &&small'' oscillations of the system about the trivial equilibrium position
(h, hQ , y, yR )"(0, 0, 0, 0), when x
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be linearized to, respectively, obtain
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The resonances associated with coupled system (17) and (18) are
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With the assumption that u
2
is larger than u

1
, it is seen from equation (19) that when C is

chosen so that (m
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have two distinct natural frequencies u
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and u
2
. Of these values, u

1
is close to zero and u

2
can be a &&large'' value when A is &&large''. Therefore, the two natural frequencies of the
system can be controlled by appropriately choosing the values of A and C in the static
feedback control law.

For example, when m
1
/m

2
"100, R

1
"9)8m, k"0, and R

2
"20 m, the "rst natural

frequency u
1

and the second natural frequency u
2

can be calculated from equation (19) to
be 0)70 and 14)12 rad/s respectively. On increasing the track radius R

2
from 10 to 50 m,

u
1

is shifted to 0)40 rad/s and u
2

is shifted to 10)98 rad/s. It is mentioned that u
2

is high
enough to be out of the excitation frequency range of interest and u

1
can be further shifted

to a low value by increasing the track radius.

3.2. NON-LINEAR SYSTEM

In this subsection, the method of multiple scales (e.g., reference [20]) is used to obtain an
analytical approximation for the solution of equations (12) and (13) in the presence of
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&&weak'' harmonic excitations. For local oscillations about the trivial equilibrium position,
retaining upto cubic non-linearities, these equations can be used to obtain
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An approximate solution of equations (20) and (21) is sought by using the method of
multiple scales. In order to facilitate the perturbation analysis, a small dimensionless
parameter e is introduced as a book-keeping device to make explicit that certain terms are
&&small''. At the end of the analysis, this parameter is set equal to one. Two time scales are
introduced according to

¹
0
"t and ¹
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"e2t. (22)

In addition, for the passive "lter, the parameter k"0 and the control input u"0. Weak
harmonic excitations, weak damping, and small ratio of pivot mass to crane}load mass are
realized by introducing
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and
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An analytical approximation for the solution of equations (20) and (21) is sought in the
form
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After substituting equation (26) into equations (20) and (21) and equating coe$cients of like
powers of e, the following hierarchy of equations is obtained:
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On examining the "rst of equations (28), it is noticeable that the external excitation directly
excites only the y motion after the introduction of the "lter. This aspect is illustrative of the
"ltering action of the mechanical "lter.

The solution of equation (27) can be expressed in the form
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where the A
i
are complex-valued amplitudes, cc indicates the complex conjugate of the

preceding terms, the quantities u2
n

are the roots of
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The frequencies u
n
, which are assumed to be distinct, depend upon the track radius R

2
, the

ratio of the pivot mass to the crane}load mass, and the cable length R
1
, as pointed out in

section 3.1. When the "lter is active, they also depend upon the proportional feedback
components.

At this stage, a detuning parameter p is introduced to de"ne the (primary) resonance

X"u
1
#e2p (32)

and it is noted that
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Introducing A
n
"1

2
a
n
exp (ib

n
) with real-valued quantities a

n
and b

n
into equation (29)

and considering the solvability conditions associated with equations (28) to eliminate the
source of the secular terms, the following slow-scale equations are obtained:
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where
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The expression for C1
2

is identical to equation (36) except that K
1

is replaced by K
2
, K

2
is

replaced by K
1
, a

1
is replaced by a

2
, and a

2
is replaced by a

1
. Furthermore, in arriving at

equations (34) and (35), only the dominant cubic non-linearities have been retained for
simpli"cation [14].

When the active input

u"e3m
1
ByR (37)

is included, the resulting slow-scale or modulation equations are identical in form to
equations (34) and (35) except that k

y
is replaced by k6

y
, which is given by

k6
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m
1

m
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B. (38)

From equation (35), it is found that the asymptotic response of the amplitude a
2
goes to zero

when (positive) damping is present. Hence, for further analysis, only equation (34) is
considered.

To generate numerical results for the system, the cable length R
1
is chosen to be 9)8m, the

radius of the track R
2

is set to 10 m, the mass ratio m
1
/m

2
"100, and the damping

quantities are set to ch/m1
R

1
"0)04 and c

y
/m

1
"0. The excitation amplitude is chosen to be

0)2015m. Fixed-point solutions of equation (34) and periodic solutions of equations (12)



Figure 4. Perturbation results for amplitude a
1

versus detuning parameter p for two di!erent values of damping.

Figure 5. Phase j
1
"(p¹

2
!b

1
) versus detuning parameter p.

Figure 6. Numerical results for amplitude h versus excitation frequency X"u
1
#p.
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and (13) are determined by using AUTO94. The results obtained when the excitation
frequency is used as a control parameter are shown in Figures 4}6. The stable solutions are
represented by solid circles, and the unstable solutions are represented by open circles.
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In Figures 4 and 5, the amplitude a
1

and the associated phase j
1
"(p¹

2
!b

1
) are shown

respectively. The curve labelled 1 in Figure 4 corresponds to the case when u"0 and the
curve labelled 2 in Figure 4 corresponds to the case when uO0 and B"!0)5. The phase
response is only shown for u"0. In the passive "lter case, a softening-spring-type response
is discernible along with the presence of saddle-node bifurcations (fold bifurcations in the
original system; that is, equations (20) and (21)). These bifurcations are eliminated with
increase in the damping.

The numerical results obtained based on system (12) and (13) are shown in Figure 6.
Noting that the magnitude of the state h predicted by the perturbation analysis is
approximately K

1
a
1
, which is 0)1005 a

1
for the parameters chosen here, the agreement

between the results of Figures 4 and 6 is found to be good.
To verify that saddle-node bifurcations do occur in the response curve labelled 1 in

Figure 4, it was examined whether points of vertical tangencies occur at the bifurcation
points. To this end, the following expression relating the amplitude a

1
to the detuning

parameter p is obtained from equation (34):
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From equation (39), it is veri"ed that [14]

dp
da2

1

"0 (41)

con"rming that the bifurcation points in Figure 4 correspond to points of vertical
tangencies or tangent bifurcations (e.g., reference [18]). Further analysis has ruled out the
possibility of Hopf bifurcations in the slow-scale equations [14].

3.3. LARGE MAGNITUDE EXCITATIONS

In the previous work of the authors [13], it was demonstrated that in the system with the
passive "lter, the bifurcations of the periodic responses are shifted to a di!erent parameter
range, and that in the system with the active "lter, these bifurcations can be eliminated. The
numerical results obtained for the active "lter system are revisited here. In particular, the
parameter values corresponding to this system are as follows. The boom orientation angle is
303, the cable length R

1
is chosen to be 9)8m, the mass ratio m

1
/m

2
"0)01, and the damping



Figure 7. Responses with and without active "lter: R
2
"10 m.

Figure 8. Responses with and without active "lter: R
2
"50m.
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quantities c
0
/m

1
R

1
"0)02 and c

y
/m

1
"0)0. The excitation amplitude is "xed at 1 m. The

track radius R
2

is 10 m in one case and 50 m in the other case. The parameters A, B, and
C in the control law (16) are 96)22, !0)5, and 0)0 respectively. The magnitudes of the stable
and unstable responses obtained by using AUTO94 are shown in Figures 7 and 8.

From Figures 7 and 8, it is observed that the cyclic-fold bifurcations of the response of the
load swing oscillation h that occur in the absence of the "lter are eliminated after
introduction of the "lter. Furthermore, by increasing the track radius, the magnitude of the
load oscillation in the system with the "lter is always less than that in the system without the
"lter over a wide range of the excitation frequency. In other words, the suppression



Figure 9. Time histories with active "lter: (a) horizontal translation of the pivot; (b) angular position of the load;
(c) horizontal translation of the load, and (d) force applied to pivot. - - - - -, lines correspond to absence of "lter and
==, lines correspond to presence of "lter.
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bandwidth can be increased to the whole range by using the static feedback control law and
increasing the track radius.

With reference to Figure 1, from a practical standpoint, one is likely to be concerned with
attenuation of the load horizontal displacement y

1
rather than the angular displacement

h about the local position. In the system without the "lter, the load horizontal displacement
is given by

y
1
"y

e
#R

1
sin h (42)

and in the system with the "lter, the load horizontal displacement is given by

y
1
"y

e
#y#R

1
sin h. (43)

To show that the load horizontal displacement is also e!ectively attenuated, a representative
case with A"24)06, B"!0)5, C"0)0, excitation frequency X"0)87 rad/s, and excitation
amplitude F"1m is considered. The respective time histories obtained through numerical
integration of equations (12) and (13) are shown in Figure 9.



Figure 10. Time histories generated from RoK ssler system: (a) xK
e
and (b) yK

e
.
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In Figure 9, the time histories of the pivot motion(y), the load angular oscillation(h), the
swing motion(y

1
), and the control force input to the pivot mass m

2
are provided. From

Figure 9, it is evident that in the system with the "lter, one can not only attenuate the load
angular oscillation but also the swing oscillation. This can be explained as follows. Since,
the y motion of the pivot is actuated to counteract the excitation y

e
, from equation (43), it is

clear that if y"!y
e
, as the load oscillation amplitude goes to zero, the horizontal

displacement of the load also goes to zero,
To examine the e!ectiveness of the active "lter in the presence of an aperiodic

disturbance, a representative case is considered. In this case, the aperiodic disturbance is
simulated by using the RoK ssler system. As described by equations (15), the parameter values
a"0)398, b"2)0, and c"4)0 are chosen to obtain chaotic motions and a scaling is used to
generate x

e
and y

e
as in the work of Yuan et al. [16] The resulting time histories are shown

in Figure 10.
The load responses in the absence and presence of the active "lter are shown in Figure 11.

Although the excitation has many frequency components, the system with the "lter is
e!ective in attenuating the load horizontal displacement. The "lter parameters are
R

2
"5 m, A"0)64, B"!4)0, and C"0)0.

3.4. INFLUENCE OF DIFFERENT FEEDBACK TERMS

Here, the in#uence of the di!erent proportional terms and the velocity feedback terms on
the load response is considered for harmonic excitations. The results are presented in the
form of bifurcation diagrams generated by using AUTO94 with the excitation frequency
being treated as a control parameter. The boom orientation angle, the cable length, and the
mass ratio have the same values as in section 3.3. The excitation amplitude is "xed at 1m.

In the system with the passive "lter, as reported in the work of Li [14], even when the
damping ch is increased to large values, bifurcations persist. However, in the system with



Figure 11. Load responses to aperiodic excitation: - - - - -, lines corresponds to absence of "lter and ==, lines
correspond to presence of "lter.

Figure 12. Responses with active "lter: u"!0)8y5 .
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the active "lter, these bifurcations can be eliminated as discussed before and shown in
Figures 12}16. To generate the results shown in Figure 12, the control law u"!0)8y5 was
used with R

2
"10m. With only velocity feedback, the bifurcations can be eliminated. As

pointed out in section 3.2, an increase in damping associated with the y motions is helpful in
this regard.



Figure 13. Responses with active "lter: u"!0)8y5 #Cy. Three curves corresponding to the parameter values of
0)0, 0)4, and 0)8 for C are shown in the "gure.

Figure 14. Responses with active "lter: u"!0)8y5 #0)8y. Two curves corresponding to the parameter values of
0)0 and 0)8 for Ch/m1

R
1

are shown in the "gure.

650 Y.-Y. LI AND B. BALACHANDRAN
To generate the results shown in Figure 13, a proportional feedback term associated with
y motions is included in addition to the derivative feedback term used earlier. The
corresponding coe$cient is increased from 0)0 to 0)8. One may recall that, as discussed in
section 3.1, the parameter C in control law (16) can be used to tailor the resonance locations.
This is taken advantage of as C is increased to 0)8 to attenuate the load oscillations. In
Figure 14, it is shown that regardless of the value of damping quantity ch (i.e., positive or
zero), the control law with proportional feedback and derivative feedback associated with
y motions is e!ective in suppressing the load oscillations over a wide frequency range.



Figure 15. Responses with active "lter: R
2
"10 and 50 m.

Figure 16. Responses with active "lter: inputs u
1

and u
2
. The two curves are virtually on top of each other.
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To obtain the results shown in Figure 15, two di!erent track radii are considered. For the
system with the radius of 10 m, the control input u"!0)8y5 #0)8y is used, and for
the system with the radius of 50m, the control input u"!0)8y is used. It is seen that with
the inclusion of proportional feedback, even for a &&smaller'' track radius, the active "lter is
e!ective in load response attenuation.

In Figure 8 of section 3.2, the responses are shown for a case where the track radius is
50 m and the control input has the form u"96)2361 sin h!0)5y5 . For a shorter track radius
of 10m and u

2
"96)2361 sin h!0)5yR #0)8y, the results obtained are shown in Figure 16.
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Comparable results are obtained even if the non-linear proportional feedback term in h is
dropped and when the control input u

1
"!0)5yR #0)8y is used. The primary thrust of the

results presented in section 3.4 has been that with a careful choice of velocity feedback and
proportional feedback associated with y motions one can e!ectively eliminate bifurcations
and enhance response suppression.

4. CONCLUDING REMARKS

The geometry of the planar mechanical "lter introduced in an earlier work by the authors
has been generalized in this work, and non-linear analyses has been carried out with the aid
of a Lyapunov function and perturbation analysis. The analytical results obtained on the
basis of the Lyapunov function show that shapes other than a circular track can also be
used for the "lter geometry and the importance of derivative feedback associated with pivot
motions for system stability. The perturbation analysis conducted by using the method of
multiple scales con"rm the presence of cyclic-fold bifurcations and softening-type behavior
in the frequency}response curves observed in the numerical results. For &&large'' amplitude
harmonic and aperiodic excitations, the numerical results illustrate the e!ectiveness of the
active "lter in load response attenuation. It is also pointed out that the response
suppression bandwidth can be tailored by suitably designing the control input.
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