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In the authors’ earlier work, a concept called a mechanical filter was introduced and
investigated for suppressing non-linear, planar crane-load oscillations on floating platforms.
To implement this concept, the pivot point about which the load oscillations occur was
constrained to follow a circular track. In the current effort, the geometry of the planar
mechanical filter is generalized, and the corresponding non-linear dynamical system is
derived and presented. On the basis of a Lyapunov function, analytical results are obtained
to aid the choice of the filter geometry and the control law. For weak harmonic disturbances,
the method of multiple scales is used to study non-linear oscillations of the system with
a circular filter. The results of the perturbation analysis demonstrate the occurrence of
cyclic-fold bifurcations in the system with the passive filter and suppression of crane-load
oscillations in the system with the active filter. The analytical results are found to be in
agreement with the associated numerical results. For large magnitude harmonic and
aperiodic disturbances, numerical results demonstrate the effectiveness of the active filter in
suppressing “large” crane-load oscillations. Tailoring of the response suppression
bandwidth by using the active filter is also discussed.

© 2001 Academic Press

1. INTRODUCTION

Cranes play an important role in production processes and serve to transfer loads from one
place to another. Over the past several decades, the topic of safe and effective control of
cranes on fixed and floating platforms has been addressed by numerous researchers. For
a crane, which is mounted on a floating platform such as a shipboard crane, the
disturbances produced by the platform motions also need to be taken into account.

The disturbances experienced by a ship vessel are usually aperiodic in nature, and in
response, this vessel can undergo roll, surge, heave, yaw, sway, and pitch motions. For
a shipboard crane, these vessel motions in turn excite the crane-load motions. In general,
the dynamics of the three-dimensional load motions is complex (e.g., see references [1-3]).
However, the dominant contribution in the disturbance provided to a crane load is known
to be due to ship-roll motions. Although many studies on control of crane-load oscillations
have been conducted previously, the focus of these studies has been on cranes on fixed
platforms (e.g., references [4-10]). Furthermore, as discussed in the previous work of the
authors [11-14], the above-mentioned efforts are primarily suited for control of “small”
crane-load oscillations. Chin and Nayfeh [15] used perturbation analysis and numerical
simulations to investigate a weakly non-linear model of a spherical pendulum
representative of a ship—crane load. Yuan et al. [16] proposed a modified cable rigging
called “Maryland Rigging” for controlling planar-load oscillations. Iwasaki et al. [17] used
an active mass—damper system to attenuate oscillations of a sling frame, which is mounted
on a floating crane.
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Figure 1. Planar system with generalized filter.

Recently, the notion of a mechanical filter was introduced for controlling non-linear,
planar-load oscillations on floating platforms. As stated in the earlier efforts of the authors
[11, 13], the words mechanical filter are used to mean a device that is introduced to suppress
and/or eliminate undesired system dynamics. Here, the filter geometry is generalized and
analytical results obtained by using a Lyapunov function and perturbation analysis are
discussed. The numerical results are also presented to complement the analytical results and
illustrate the effectiveness of the filter in the presence of “large” magnitude harmonic and
aperiodic ship-roll-induced disturbances.

The rest of this paper is organized as follows. The governing equations for a system with
the generalized filter are derived and presented in section 2 along with analytical results
based on Lyapunov stability. For “weak” harmonic forcing, the method of multiple scales is
used to analyze the non-linear oscillations of the system with the circular filter in section 3.
In this section, numerical results obtained for “large” magnitude harmonic and aperiodic
disturbances are also presented, and the influence of each of the different feedback terms on
the load response is also explored. Inferences drawn from the work are presented to close
the article.

2. MECHANICAL FILTER WITH GENERALIZED GEOMETRY

In this section, a planar mechanical filter with generalized geometry is considered as
shown in Figure 1. The function x = f(y), which describes the geometry of the track, is
assumed to be a continuously differentiable function with respect to y upto the second
order. The mass of the pivot is represented by m,, the spring constant associated with each
restraining spring is represented by k, and the dimensions of the pivot mass are assumed to
be “small” with respect to characteristic dimensions of the track. The excitation components
along the x- and y-axis are represented by x, and y, respectively.
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For this system, after inclusion of damping and the control input u shown in Figure 1, the
governing equations for the planar system are determined by using Lagrange’s equations to
have the following form:

. d d?
mR30 + m1R1|: — Xsin0 + (y + y.)cos 6 — d—fsin 0y — d—J;sin 0)}2:|
y y

+ mygRysin 6 + ¢ = 0, (1)

mllef( — g}{sin 0 + cos 0> + m1R102< — ycos() — sin ()> + (m; + mz)gjée

dy dy
+ (my + mz)[l + (—df>2]j}
dy

. d
T (my + M) — (my + ma)g d§

dfd*f . .
+ (m, +m2)d_j:d_y{y2 + ¢,y + 2ky = u. )

Once the geometry of the track is chosen as in the study of Balachandran et al. [13], the
governing equations of the system can be obtained by substituting the geometry function
f(y) into equations (1) and (2). This function can be chosen to introduce “appropriate”
coupling non-linearities between the pivot state y and the load state 6. In these equations,
the quantities ¢, and ¢, represent damping associated with the angular motions of the load
and the horizontal translational motions of the pivot point respectively. Next, to aid the
choice of the track geometry and the form of the active control law, analytical results
obtained on the basis of a Lyapunov function are presented.

Theorem 1. Suppose that x, =y, = 0 and ¢y = ¢, = 0 in dynamical system (1) and (2) and let
the filter geometry be such that x = f(y) < 0, and the control input u = — By, B > 0. Also, let
the origin (0, 0, y, y) = (0, 0, 0, 0) be the considered equilibrium point and D < S x R? be a
domain containing the equilibrium point. Then, the equilibrium position (0, 0, y, y) = (0, 0, 0, 0)
is stable.

Proof. Let the energy function of the system be chosen as the Lyapunov function; that is,
V =3m (33 + 33) + tma(x3 + 93) + Ri(1 — cosO)myg — x(my + my)g + ky*.  (3)

From equation (3), it is clear that
V@0)=0 and V>0 in D — {0}. 4)

The time derivative ¥ along a solution of equations (1) and (2) is given by

. d d? d 2
el ()

2
+ m Ry { — ddf(zy) y20sin 6 — |:d(];(y) sin 0 — cos 0} 0y + y0)
y y
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— [d‘(};(y) cos 0 + sin 0])}92 + Rlég}
y

. d
+ R,0sinOm,g — % y(my + my)g + 2kyy. (5)

After making use of equation (1), the expression for ¥ can be simplified to
V=uy=—By><0 inD— {0} (6)
Therefore, according to Lyapunov, the equilibrium point is stable [18, 19]. [

Theorem 2. Suppose that x, = y, = 0 and ¢y = ¢, = 0 in the dynamical system (1) and (2) and
let the filter geometry be such that x = f(y) <0 and the control input u = — By, B> 0. If
there is no other solution (0%, 0%, y*, y*) of system (1) and (2) under the above conditions
other than the solution (0,0, y,y) = (0,0,0,0) within D, c D < Sx R3, then the origin
0,0, v, 9) =(0,0,0,0) is asymptotically stable in D,.

Proof. From Lyapunov function (3), one has (0) = 0, and a domain can be found so that
Dy = {(0.0.y. )V <1}, ™

where [ is a finite positive quantity. In addition,
V>0 for(0,0,y,y)eD, and (0,0, y,) #(0,0,0,0), (8)
V=uy=—By><0 for(0,0,y, y)eD,. )

On the basis of Krasovskii’s theorem [18], the origin (0,0, y,y)=(0,0,0,0) is
asymptotically stable in D,. []

It is easy to verify that the above two theorems hold when ¢, > 0 and ¢, > 0. From the
above global analytical results, as expected, it is found that the derivative feedback term By
plays an important role in determining the system stability. Regarding the geometry of the
filter, the results indicate that as long as x =f(y) <0, it is possible to have a stable
non-linear system. Shapes other than a circular track that satisfy this condition can be used.
However, the analytical results presented thus far are valid only for free oscillations. In the
case of harmonically forced oscillations, the Lyapunov function can still be used to illustrate
response stabilization.

3. MECHANICAL FILTER WITH CIRCULAR GEOMETRY

In this section, a mechanical filter with a circular track is presented along with results of
non-linear analysis carried out for a system subjected to a “weak” harmonic forcing.
A linear analysis is also presented to illustrate how the system resonances can be tailored by
using active feedback. In addition, the system responses are numerically explored for “large”
magnitude excitations and the influences of the different feedback terms on the load
response are also explored.

In Figure 2, side views of a crane configuration and a modified crane configuration are
shown along with an enlarged inset of the filter introduced in the earlier work of the authors
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Figure 2. Crane configuration without rider block tagging system: filter at boom tip. (a) Sideview of crane
configuration; (b) modified crane configuration, (c) mechanical filter.

Tip
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Figure 3. Crane configuration with rider block tagging system: filter in-between boom tip and load. (a) Sideview
of crane configuration; (b) modified crane configuration; (c) mechanical filter.

[13, 14]. In Figure 3, side views of a different crane configuration and a modified version of
this crane configuration are shown along with an enlarged inset of the circular filter. In the
crane systems shown in Figures 2 and 3, the mechanical filters are installed at two different
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positions. In each case, the boom orientation in the plane is specified by the angle ¢ and the
longitudinal axis of the vessel about which the roll oscillations occur is normal to the
considered side view. Here, only planar-load oscillations that may arise as a result of
ship-roll motions are addressed. Although the physical configurations shown in Figures 2
and 3 are different, the same mathematical model can be used to describe the systems with
and without the filter to understand the qualitative aspects of the dynamics.

Assuming that the boom configuration is rigid, the roll motion of the ship will translate
into an excitation with horizontal and vertical components at the crane pivot. As in the
earlier work [13], the circular track is assumed to be of radius R,. After inclusion of
damping, the planar pendulum in the system without the filter is governed by

m R0 + m;R,( — X,sin 0 + y,cos0) + mgR, sin O + c,0 = 0, (10)

where R, is the length of the inextensional cable shown in Figure 1.
In the system with the filter, the motion of mass m, is constrained to follow a circular
track that is described by

2 4
¥y
- 11
YT TR, 8RS (D

After substituting equation (11) into equations (1) and (2), the resulting equations are

3
mR20 + m;R, |:—x sm9+(y+ye)cosﬁ+<y 2);{3>sm0y

1 3y2 . :
+ 2R3 sin 092 | + mygR,sin 0 + ¢,0 = 0, (12)

3
m1R1§[< 2 >1n9+cos(9]+m1R 62[<Ryz+2yR2>cos9—sm8]
y ¥\
— (my + my) ( 2R2>x +(m1+m2)[1+< —l—m) }y

3
+ (my + my)y, + (my 4+ my)g < + 3)
3 2
y Y 1 3y
+(m1+m2)<R_2+2—R§>< +—>y +c, i+ 2ky =u. (13)

When the excitation due to the roll motion of the vessel is harmonic, the excitation
components x,(t) and y,(t) can be idealized to be

x.(t) = (F sin Qt) cos ¢, Ve(t) = (F sin 2t)sin ¢, (14)

where F is the excitation amplitude and @ is the excitation frequency. To simulate
excitations produced by aperiodic roll motions, the Rdssler system (e.g., reference [16])

X=—05y+2
y=05(x + ay) X, =02xcos¢; y,=02xsin¢ (15)
Z=05[b + z(x — ¢]]

with the parameter values a = 0-398, b = 2, and ¢ = 4 is used.
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In the system with the filter, when the control input u = 0 in equations (12) and (13), the
corresponding case is referred to as a “passive control” or “passive filter” case. Otherwise,
the corresponding case is referred to as an “active control” or “active filter” case. As in the
study of Balachandran et al. [13], a feedback control law of the following form is
considered.

u= ”feedback = ml(A Sing + B.)} + Cy) (16)

3.1. LINEAR SYSTEM

Here, a linearized version of equations (12) and (13) is used to point out how the
proportional feedback terms in the active control law (16) can be used to tailor the system
resonances. For “small” oscillations of the system about the trivial equilibrium position
©,0,y,y) =(0,0,0,0), whenx, = y, =0, ¢y = ¢, = 0,and B = 0, equations (12) and (13) can
be linearized to, respectively, obtain

mlR%@)' + mlRl:)./ + mlgRle = 0, (17)
myRy 0 + (my + my)y + (my + mz)gRl ¥ 2ky = u = my (46 + Cy). (18)
2

The resonances associated with coupled system (17) and (18) are

m; +m 1 1 m 2k m
2 _ my Ry R, myRy m;  my

W12
2

my +m, 1 1 my 2k my 2 my +m,y g 2k my
SR L/ (e el | S Ve
\/|: my g<R1 R2> mle <m2 my g mle R2 my my

(19)

t

With the assumption that w, is larger than w1, it is seen from equation (19) that when C is
chosen so that (m; + mz)mxR1 g/Rz + (2k/m, — (m1/m3)C) is close to zero, the system can
have two distinct natural frequencies w; and w,. Of these values, w1 is close to zero and w;
can be a “large” value when A is “large”. Therefore, the two natural frequencies of the
system can be controlled by appropriately choosing the values of 4 and C in the static
feedback control law.

For example, when mi/m, = 100, Ry = 9-8m, k =0, and R, = 20 m, the first natural
frequency w; and the second natural frequency w, can be calculated from equation (19) to
be 0-70 and 14-12 rad/s respectively. On increasing the track radius R, from 10 to 50 m,
w; 1is shifted to 040 rad/s and w; is shifted to 10-98 rad/s. It is mentioned that w; is high
enough to be out of the excitation frequency range of interest and w; can be further shifted
to a low value by increasing the track radius.

3.2. NON-LINEAR SYSTEM

In this subsection, the method of multiple scales (e.g., reference [20]) is used to obtain an
analytical approximation for the solution of equations (12) and (13) in the presence of
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“weak” harmonic excitations. For local oscillations about the trivial equilibrium position,
retaining upto cubic non-linearities, these equations can be used to obtain

. y0 0% y20 03 Co 4 . 0?
- LA AU | IS AL S A I B
y {”“( R, 2 )[ R, N\""%) mr Y 2

[x (0 - %ﬂ — (my + m,) Rl Ko — (my + my)7e

2 2
—cyy'—zky+u}/m2[1+y2+"“<02+y2—2y0>], (20)
5 y@ 02 .
i=(rr s

yo  0? . 03 . 0?
+m1<—R2+2—1>[xe<9—6 — Ve 1—2

. y .
— (my + my) yo — (my + mz)R* Xe
2

s y y V.
R.O* —=+90 _ _ 2
+ mR, < R, + >—|— (my + m2)< R2>g (my + mZ)R%y

2 2
. yo o m y y0

1 1Y, 0° o 5 . 0%\ | . 0°
+R—1|:<—R—2>y9—g<0—z>—mlR10—ye<l—? s U L Y

An approximate solution of equations (20) and (21) is sought by using the method of
multiple scales. In order to facilitate the perturbation analysis, a small dimensionless
parameter ¢ is introduced as a book-keeping device to make explicit that certain terms are
“small”. At the end of the analysis, this parameter is set equal to one. Two time scales are
introduced according to

To=t and T, =¢ (22)
In addition, for the passive filter, the parameter k = 0 and the control input u = 0. Weak
harmonic excitations, weak damping, and small ratio of pivot mass to crane-load mass are
realized by introducing

x(t) = e’F,cos Qr and y,(t) = &’F,cos Qt, (23)

Co

c
=&y, and L =¢° 24
myR, & Ho m, ol @4
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and

™ _ 0. (25)
nmy

An analytical approximation for the solution of equations (20) and (21) is sought in the
form

W) = ey1(To, To) + €°y3(To, To) + -+,
0(t) = €01(To, To) + &°05(Ty, To) + ---. (26)

After substituting equation (26) into equations (20) and (21) and equating coefficients of like
powers of ¢, the following hierarchy of equations is obtained:

O(e):
m; +m g m
Doy + <¥>—J’1 ——1J91 =0,
my R, my
my+my\ g my + mjy
D30, — | ———= )=y, +———=¢g0, =0. 27
oV1 < MR, >R2J/1 MR, guy (27)
0(e%)
my +m g m
Dé)’s +<12>Y3 —*1993
my R, my

= —2DoD;(y1) — EQ%cos(Qt) + 1pDo0y — pt,Doy1

i nmy miRy

0, (D0y1)2 - yl(D091)2

m,R, m,R,

n mlRl

m
04 (D091)2 - 712}’1 (Doy1)2
my m;R35

2

mi 5 my(3my +my) g R

——g0 + ——=—y,0
591 % R2y1 1

my(3m; +my) g
T I 20, 4

my R} mj  R37V
m; +my\ g my; + m,
D, — | ——= | -= —Z g0
o3 < mR, >R2y3+< mR, >g 3

= —2D,D,(0,) + z—yl Doy, — g—elD091

my(my +my) g 4

(my/my + 1) my
——— = 20, (Doyy)?
R.R, 1 (Doyy)™ + m,R

J’1(D001)2
2
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my
——0,(Dy0,)* + D
"y 1(Doby)” + moR, Rzyl( 0)’1)
2
mi 5 mQBmg+my) g 2
——g0; — 0
+m§ng 1 e R,R, Y101
my(3my + my) 2 mi(my +my) g 3
10, — . 28
m Rle ! mi  RIR, @8

On examining the first of equations (28), it is noticeable that the external excitation directly
excites only the y motion after the introduction of the filter. This aspect is illustrative of the
filtering action of the mechanical filter.

The solution of equation (27) can be expressed in the form

Vi(To, T5) = A4(T>)exp (iw; To) + A5(T,) exp (i, To) + cc,
01(Ty, Ty) = A1A(Ty)exp (i Tp) + A, A,(T,) exp (iw, To) + cc, (29)

where the A4; are complex-valued amplitudes, cc indicates the complex conjugate of the
preceding terms, the quantities w; are the roots of

m; +m, ¢ my

— w? + 71{7 ——9
m m
2 2 2 -0 (30)
_mytmy g —w? my + m;
my,R; R, m,R
and
= (my + my)/myRy g/R, (31)

(my + my)/myRy g — wr% .

The frequencies w,, which are assumed to be distinct, depend upon the track radius R,, the
ratio of the pivot mass to the crane-load mass, and the cable length R, as pointed out in
section 3.1. When the filter is active, they also depend upon the proportional feedback
components.

At this stage, a detuning parameter ¢ is introduced to define the (primary) resonance

Q=w; + % (32)
and it is noted that
QIZQTOZ((Dl+820)T0:(U1T0+0'T2. (33)

Introducing A4, = 3o, exp (if,) with real-valued quantities «, and B, into equation (29)
and considering the solvability conditions associated with equations (28) to eliminate the
source of the secular terms, the following slow-scale equations are obtained:

my; +m m , m; +m F .
— Wy 1729—60%4‘*19/11 o + 1729—(0% < oisin(@Ty — fi)
m2R1 my mle 2

1 my + my > my |y HeAy
S (T, Ay — S =0,
+2w1{< R, 97O Wedr— )+ o TR [
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my +m m , my +m F
B RSP PN T I L
2

m2R1 mZRl
my + my 2 myg —
< moR, g 1 m2R1> 1 (34)
m; +m m .1 my; +m
— W3 ¥g—w§+—lg/12 oy + 5w #g—wg (A2 — pty)
mle my 2 m2R1
my Ky Moy
+—9g| = — =0,
my [Rl R, J} :
my +m m my +m m _
wzaz<¥g—w§+—lg/lz>ﬁ/z+<¥g—w§— 1g>r2=0, (35)
m,R, m, m,R, myR,y

_ m 3 3
- —;g(— Aiad + AA)
m2 8 4

3 3 ! !
L mBmi +ms) g <_ Ao + - Aoyl + EAlAzw%>

m3 R*\8 4
my(3my +my) g (3 ! !
_ #R_% <§A1(x‘;’ + Z/lloclocf + EAzfxlO‘%
my(my +my) g (3 3
P (R ). 0

The expression for I, is identical to equation (36) except that A, is replaced by A,, A, is
replaced by A, oy is replaced by a,, and «, is replaced by «;. Furthermore, in arriving at
equations (34) and (35), only the dominant cubic non-linearities have been retained for
simplification [14].

When the active input

u = ¢>m, By (37)

is included, the resulting slow-scale or modulation equations are identical in form to
equations (34) and (35) except that p, is replaced by fi,, which is given by

From equation (35), it is found that the asymptotic response of the amplitude o, goes to zero
when (positive) damping is present. Hence, for further analysis, only equation (34) is
considered.

To generate numerical results for the system, the cable length R, is chosen to be 9-8 m, the
radius of the track R, is set to 10 m, the mass ratio m;/m, = 100, and the damping
quantities are set to c¢y/mR; = 0-04 and c¢,/m; = 0. The excitation amplitude is chosen to be
0-2015m. Fixed-point solutions of equation (34) and periodic solutions of equations (12)
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Figure 4. Perturbation results for amplitude «; versus detuning parameter ¢ for two different values of damping
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Figure 6. Numerical results for amplitude 0 versus excitation frequency Q = w; + a.
and (13) are determined by using AUTO94. The results obtained when the excitation

frequency is used as a control parameter are shown in Figures 4-6. The stable solutions are
represented by solid circles, and the unstable solutions are represented by open circles.
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In Figures 4 and 5, the amplitude oy and the associated phase A; = (6T, — f§;) are shown
respectively. The curve labelled 1 in Figure 4 corresponds to the case when u = 0 and the
curve labelled 2 in Figure 4 corresponds to the case when u # 0 and B = — 0-5. The phase
response is only shown for u = 0. In the passive filter case, a softening-spring-type response
is discernible along with the presence of saddle-node bifurcations (fold bifurcations in the
original system; that is, equations (20) and (21)). These bifurcations are eliminated with
increase in the damping.

The numerical results obtained based on system (12) and (13) are shown in Figure 6.
Noting that the magnitude of the state 0 predicted by the perturbation analysis is
approximately A;o;, which is 0-1005 o; for the parameters chosen here, the agreement
between the results of Figures 4 and 6 is found to be good.

To verify that saddle-node bifurcations do occur in the response curve labelled 1 in
Figure 4, it was examined whether points of vertical tangencies occur at the bifurcation
points. To this end, the following expression relating the amplitude «; to the detuning
parameter ¢ is obtained from equation (34):

do (0,Cs0 + Csfﬂ%)z + 30, C3 C3f1

_ _ _ Y — , 39
do? 203 (0,C0 + C3T103)(0,Cy)  @,C, (39
where
_l’_
C1=ug_wi C2=C1+@g/11, C3:C1—mlg,
m2R1 my m2R1
my Ky Moy
C, = Ci(peAy — —g|=— ,
4 1(pody #y)+m2g|:R1 R, :|
2
- mi (3 5 mi(Bmy +my) g (3 , 3
I=——tgloa3)+ LT I (2 2R, 2y
1 m§g<8 1>+ e RI\g 12T
my(3my +my) g 3
—_— 40
T RS (40
From equation (39), it is verified that [14]
do
— = 41
do? (41)

confirming that the bifurcation points in Figure 4 correspond to points of vertical
tangencies or tangent bifurcations (e.g., reference [ 18]). Further analysis has ruled out the
possibility of Hopf bifurcations in the slow-scale equations [14].

3.3. LARGE MAGNITUDE EXCITATIONS

In the previous work of the authors [13], it was demonstrated that in the system with the
passive filter, the bifurcations of the periodic responses are shifted to a different parameter
range, and that in the system with the active filter, these bifurcations can be eliminated. The
numerical results obtained for the active filter system are revisited here. In particular, the
parameter values corresponding to this system are as follows. The boom orientation angle is
30°, the cable length R is chosen to be 9-8 m, the mass ratio m;/m, = 0-01, and the damping
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Figure 8. Responses with and without active filter: R, = 50m.

quantities c¢o/m;R; = 0-02 and c¢,/m; = 0-0. The excitation amplitude is fixed at 1 m. The
track radius R, is 10 m in one case and 50 m in the other case. The parameters 4, B, and
C in the control law (16) are 9622, — 0-5, and 0-0 respectively. The magnitudes of the stable
and unstable responses obtained by using AUTO94 are shown in Figures 7 and 8.

From Figures 7 and 8, it is observed that the cyclic-fold bifurcations of the response of the
load swing oscillation 6 that occur in the absence of the filter are eliminated after
introduction of the filter. Furthermore, by increasing the track radius, the magnitude of the
load oscillation in the system with the filter is always less than that in the system without the
filter over a wide range of the excitation frequency. In other words, the suppression
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Figure 9. Time histories with active filter: (a) horizontal translation of the pivot; (b) angular position of the load,
(c) horizontal translation of the load, and (d) force applied to pivot. ---- - , lines correspond to absence of filter and
—— lines correspond to presence of filter.

bandwidth can be increased to the whole range by using the static feedback control law and
increasing the track radius.

With reference to Figure 1, from a practical standpoint, one is likely to be concerned with
attenuation of the load horizontal displacement y; rather than the angular displacement
0 about the local position. In the system without the filter, the load horizontal displacement
is given by

Y1 =Y.+ R;sin0 (42)
and in the system with the filter, the load horizontal displacement is given by
Y1 =Y.+ y+ Rysind. (43)

To show that the load horizontal displacement is also effectively attenuated, a representative
case with 4 = 24-06, B = — 0-5, C = 0-0, excitation frequency Q = 0-87 rad/s, and excitation
amplitude F = 1 m is considered. The respective time histories obtained through numerical
integration of equations (12) and (13) are shown in Figure 9.



648 Y.-Y. LI AND B. BALACHANDRAN

1
@
E
e
_ 1 ) 1 ) 1 1
0 100 200 300 400 500 600 700
Time (s)
(b)
E
N
' 0 100 200 300 400 500 600 700

Time (s)

Figure 10. Time histories generated from Rossler system: (a) X, and (b) y,.

In Figure 9, the time histories of the pivot motion(y), the load angular oscillation(d), the
swing motion(y;), and the control force input to the pivot mass m, are provided. From
Figure 9, it is evident that in the system with the filter, one can not only attenuate the load
angular oscillation but also the swing oscillation. This can be explained as follows. Since,
the y motion of the pivot is actuated to counteract the excitation y,, from equation (43), it is
clear that if y = — y,, as the load oscillation amplitude goes to zero, the horizontal
displacement of the load also goes to zero,

To examine the effectiveness of the active filter in the presence of an aperiodic
disturbance, a representative case is considered. In this case, the aperiodic disturbance is
simulated by using the Rossler system. As described by equations (15), the parameter values
a =0398,b = 2:0,and ¢ = 40 are chosen to obtain chaotic motions and a scaling is used to
generate x, and y, as in the work of Yuan et al. [16] The resulting time histories are shown
in Figure 10.

The load responses in the absence and presence of the active filter are shown in Figure 11.
Although the excitation has many frequency components, the system with the filter is
effective in attenuating the load horizontal displacement. The filter parameters are
R, =5m, A =064, B=—4-0, and C = 0-0.

3.4, INFLUENCE OF DIFFERENT FEEDBACK TERMS

Here, the influence of the different proportional terms and the velocity feedback terms on
the load response is considered for harmonic excitations. The results are presented in the
form of bifurcation diagrams generated by using AUTO94 with the excitation frequency
being treated as a control parameter. The boom orientation angle, the cable length, and the
mass ratio have the same values as in section 3.3. The excitation amplitude is fixed at 1 m.

In the system with the passive filter, as reported in the work of Li [14], even when the
damping ¢, is increased to large values, bifurcations persist. However, in the system with
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Figure 12. Responses with active filter: u = — 0-8.

the active filter, these bifurcations can be eliminated as discussed before and shown in
Figures 12-16. To generate the results shown in Figure 12, the control law u = — 0-8) was
used with R, = 10m. With only velocity feedback, the bifurcations can be eliminated. As
pointed out in section 3.2, an increase in damping associated with the y motions is helpful in
this regard.
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Figure 14. Responses with active filter: u = — 0-8) + 0-8y. Two curves corresponding to the parameter values of
0-0 and 0-8 for Cy/mR, are shown in the figure.

To generate the results shown in Figure 13, a proportional feedback term associated with
y motions is included in addition to the derivative feedback term used earlier. The
corresponding coefficient is increased from 0-0 to 0-8. One may recall that, as discussed in
section 3.1, the parameter C in control law (16) can be used to tailor the resonance locations.
This is taken advantage of as C is increased to 0-8 to attenuate the load oscillations. In
Figure 14, it is shown that regardless of the value of damping quantity ¢, (i.e., positive or
zero), the control law with proportional feedback and derivative feedback associated with
y motions is effective in suppressing the load oscillations over a wide frequency range.
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To obtain the results shown in Figure 15, two different track radii are considered. For the
system with the radius of 10 m, the control input u = — 0-8) + 0-8y is used, and for
the system with the radius of 50 m, the control input u = — 0-8y is used. It is seen that with
the inclusion of proportional feedback, even for a “smaller” track radius, the active filter is
effective in load response attenuation.

In Figure 8 of section 3.2, the responses are shown for a case where the track radius is
50 m and the control input has the form u = 96-2361sin 0 — 0-5j. For a shorter track radius
of 10m and u, = 96-2361sin 0 — 0-5y + 0-8y, the results obtained are shown in Figure 16.
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Comparable results are obtained even if the non-linear proportional feedback term in 6 is
dropped and when the control input u; = — 0-5y + 0-8y is used. The primary thrust of the
results presented in section 3.4 has been that with a careful choice of velocity feedback and
proportional feedback associated with y motions one can effectively eliminate bifurcations
and enhance response suppression.

4. CONCLUDING REMARKS

The geometry of the planar mechanical filter introduced in an earlier work by the authors
has been generalized in this work, and non-linear analyses has been carried out with the aid
of a Lyapunov function and perturbation analysis. The analytical results obtained on the
basis of the Lyapunov function show that shapes other than a circular track can also be
used for the filter geometry and the importance of derivative feedback associated with pivot
motions for system stability. The perturbation analysis conducted by using the method of
multiple scales confirm the presence of cyclic-fold bifurcations and softening-type behavior
in the frequency-response curves observed in the numerical results. For “large” amplitude
harmonic and aperiodic excitations, the numerical results illustrate the effectiveness of the
active filter in load response attenuation. It is also pointed out that the response
suppression bandwidth can be tailored by suitably designing the control input.
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